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Abstract Arterial wall can be modeled by a quasi-incompressible, anisotropic and
hyperelastic equation that allows large deformation. Most existing nonlinear solvers
for the steady hyperelastic problem are based on pseudo time stepping, which often
requires a large number of time steps especially for the case of large deformation.
It is also reported that the quasi-incompressibility and high anisotropy have nega-
tive effects on the convergence of both Newton’s iteration and the linear Jacobian
solver. In this paper, we propose and study a nonlinearly preconditioned Newton
method based on nonlinear elimination to calculate the steady solution directly with-
out pseudo time integration. We show numerically that the nonlinear elimination
preconditioner accelerates Newton’s convergence in cases with large deformation,
quasi-incompressibility and high anisotropy.

1 Introduction

Some biological soft tissues, such as the arterial wall, are quasi-incompressible and
are reinforced by collagen fibers, which induce the anisotropy in the mechanical
response. Polyconvex hyperelastic models [2, 4], which are based on polycon-
vex energy-stored functions, provide a unified framework to describe the quasi-
incompressibility, the anisotropy and the nonlinearly elastic behavior of arterial
walls in the regime allowing large deformations. By using finite element discretiza-
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tions [3] for these models and Newton-type nonlinear solvers, numerical simulation
of arterial walls becomes a promising approach in clinical diagnosis and treatment
assistance. However, the design of robust nonlinear and linear solvers is a challeng-
ing problem due to the sophisticated mechanical properties of arterial walls.

In [5], the authors consider several material models for arterial walls in order to
study the mechanical response and the influence on the nonlinear iteration as well
as on the finite element tearing and interconnecting-dual primal (FETI-DP) iterative
linear solver. The stagnation of Newton’s method is observed for some parameter
sets. In order to cope with the quasi-incompressible condition, an augmented La-
grange approach is proposed in [6]. The penalty parameter for the incompressibility
can be chosen much smaller and therefore the resulting linear systems have better
properties. Both nonlinear solvers mentioned above are based on pseudo time step-
ping, which often requires a large number of global nonlinear iterations especially
for the case of large deformation.

To accelerate the convergence of the nonlinear iteration, we consider a nonlin-
early preconditioned Newton method based on nonlinear elimination to calculate the
solution directly without pseudo time integration. The nonlinear elimination method
is first proposed and analyzed in [12] and then developed in [7, 11] for the problems
with high local nonlinearity. For our cases of hyperelasticity, we numerically ob-
serve that the variables with stronger nonlinearity are not fixed, but change as the
propagation of the elastic wave. Thus, we adaptively detect the variables and equa-
tions with stronger nonlinearity by the residuals. After eliminating these equations,
the approximate solution is more accurate in some key locations of the elastic wave
and therefore the global Newton’s method converges better.

2 Modeling and Discretization

In this section, we discuss a hyperelastic model for arterial walls and its finite el-
ement discretization. First, we introduce some basic notations in continuum me-
chanics. The body of interest in the reference configuration is denoted by Ω̂ ∈ R3,
parameterized in x̂, and the current configuration by Ω ∈R3, parametrized by x. The
deformation map φ : Ω̂ 7→ Ω is a differential isomorphism between the reference
and current configuration. The deformation gradient F is defined by F(x̂) = ∇φ(x̂)
with the Jacobian J(x̂) = detF(x̂)> 0. The right Cauchy-Green tensor is defined as
C = FT F.

The hyperelastic materials postulate the existence of a so-called store-energy
function ψ , defined per unit reference volume. According to the axiom of material
frame-indifference [8], the energy functional depends on the Cauchy-Green tensor,
i.e., ψ = ψ(C). The first and second Piola-Kirchhoff stress tensor can be derived as
P=FS, S= 2∂Cψ(C). And then the Cauchy stress is given by σ = J−1FSFT . The
balance of the momentum is governed by the following partial differential equation

divP =− f ,
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plus appropriate boundary condition. Here f is the body force vector.
We focus on the polyconvex energy functional proposed in [4],

ψA = ψ
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which models the quasi-incompressible and fibre-enforcing arterial wall. Here, 〈b〉
denotes the Macaulay brackets defined by 〈b〉 = (|b|+ b)/2, with b ∈ R. And
I1, I2, I3 are the principal invariants of C; i.e. I1 := trC, I2 := tr[cof C], I3 := detC,

where cof C = (detC)C−T . The additional mixed invariants J(i)4 ,J(i)5 characterize the

anisotropic behavior of arterial wall and are defined as J(i)4 := tr[CM(i)], J(i)5 :=
tr[C2M(i)], for i = 1 : 2, where M(i) := a(i)⊗a(i), i = 1,2 are the structural tensors
with a(i), i = 1,2 denoting the direction fields of the embedded collagen fibers.

The polyconvexity condition in the sense of [2] is the essential condition to en-
sure the existence of energy minimizers. There are three parts in ψA:

• ψ isochoric is the isochoric part of the isotropic energy. Similar to the Neo-Hookean
material, c1 is stress-type coefficient with upper and lower bounds.

• ψvolumetric is the penalty function to account for the quasi-incompressibility. The
coefficients ε1,ε2 would be very large for the incompressible material.

• ψ ti is the transversely isotropic part. The anisotropy comes from the exponential
stiffening of the fibers when increasing loads are applied. Relative large coeffi-
cients α1,α2 indicate large anisotropy.

According to [3], the lowest-order Lagrange finite element with linear shape
functions is not sufficient to provide a good approximation for the arterial wall
stresses, whereas for the Lagrange finite elements or F-bar formulations with
quadratic shape functions, suitable results are obtained. Instead of concerning about
the stress, we focus on the nonlinear solvers for the resulting system. Thus, for sim-
plicity, we use the P1 Lagrange finite element to approximate the displacement.

3 Inexact Newton Method with Nonlinear Preconditioning

With a slight abuse of notation, we denote the nonlinear system after the discretiza-
tion as described above

F(u∗) = 0

where F : Rn 7→ Rn. Inexact Newton (IN) algorithms [9, 10] are commonly used for
solving such system and can briefly be described here. Suppose u(k) is the current
approximate solution, a new approximate solution u(k+1) can be computed through

u(k+1) = u(k)+λ
(k)p(k),
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where the inexact Newton direction p(k) satisfies

‖F(u(k))+F ′(u(k))p(k)‖ ≤ ηk‖F(u(k))‖.

Here ηk ∈ [0,1) is a scalar that determines how accurately the Jacobian system needs
to be solved, and λ (k) is another scalar that determines how far one should go in the
selected direction.

3.1 Nonlinear Elimination

It is reported in [5, 6], the incompressibility and large anisotropy have a negative
effect on the convergence of both Newton’s iteration and the Jacobian solver. To
accelerate Newton’s convergence, we introduce a nonlinear elimination precondi-
tioner [7, 11, 12], which balances the nonlinearity of the global problem by solving
the subproblems defined in the subdomains or subspaces. Let S = {1, · · · ,n} be an
index set; i.e., one integer for each unknown ui and residual Fi. We choose a sub-
set Sb ⊂ S of the indices corresponding to the “bad” degrees of freedom (d.o.f.), of
which the nonlinearity is dominant. The corresponding subspace is denoted by

Vb = {v | v = (v1, · · · ,vn)
T ∈ Rn,vk = 0, if k 6∈ Sb}.

The corresponding restriction operator is denoted by Rb ∈ Rn×n, whose kth column
is either zero if k 6∈ Sb or the kth column of the indentity matrix In×n. Thus the
subspace and the corresponding restriction for the “good” d.o.f. are denoted by Vg
and Rg = In×n−Rb.

Given an approximate solution u and a sub index set Sb, the nonlinear elimination
algorithm finds the correction by approximately solving ub ∈Vb,

Fb(ub) := RbF(ub +u) = 0. (2)

The new approximate solution is then updated as w = ub + u. It is easy to see that
the Jacobian of the sub nonlinear problem (2) is Jb(ub) = RbJ(ub + u)RT

b . Here

J = F ′ =
(

∂Fi
∂u j

)
n×n

is the Jacobian of F .

Suppose we are at the iteration k and u(k) is the current approximation, the inexact
Newton algorithm with nonlinear elimination is described as below

Algorithm 1. (IN-NE)

Step 1. Compute the next approximate solution u(k+1) by solving the following
nonlinear system

F(u) = 0
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with one step of IN iteration using u(k) as the initial guess. If the global conver-
gent condition is satisfied, stop. Otherwise, go to Step 2.

Step 2. (Nonlinearity checking)

2.1 If ‖F(u(k+1))‖< ρ1‖F(u(k))‖, go to Step 1.
2.2 Finding “bad” d.o.f. by

Sb := { j ∈ S
∣∣ |Fj(u(k+1))|> ρ2‖F(u(k+1))‖∞}.

And extend Sb to Sδ
b by adding the neighbor d.o.f..

2.3 If #(Sδ
b )< ρ3n, go to Step 3. Otherwise, go to Step 1.

Here ρ1,ρ2,ρ3 ∈ (0,1) and δ ∈ Z+ are pre-chosen constants.
Step 3. Compute the correction uδ

b ∈ Vb by solving the sub nonlinear system ap-
proximately

Fδ
b (uδ

b ) := Rδ
b F(uδ

b +u(k+1)) = 0,

with an initial guess uδ
b = 0 and a relative tolerance tol=max(γa,γr‖Rδ

b F(u(k+1))‖).
If ‖F(uδ

b + u(k+1))‖ < ‖F(u(k+1))‖, accept the correction and update u(k+1) ←
uδ

b +u(k+1). Go to Step 1.

There are three tolerance parameters in the nonlinear checking step: ρ1 is the
tolerance for the reduction of the residual norm, ρ2 is the tolerance to pick up the bad
d.o.f. and ρ3 is the tolerance to limit the size of the subproblem. In Step 3, we only
accept the correction by nonlinear elimination if the residual norm decreases. But
in practice, if the norm of the corrected residual does not decrease for 3 successive
steps, we choose to accept the correction without checking the residual.

Different to the nonlinear elimination method proposed in [12], where the au-
thors fix for all steps the set of equations to eliminate, we construct adaptively the
index set Sb by the residual F(u(k+1)). Actually, the residual can be viewed as a
measurement of the Hessian of F by the Taylor expansion,

F(u(k+1)) = F(u(k))+F ′(u(k))p(k)+ 〈F ′′(u(k)+θ p(k))p(k), p(k)〉

≈ 〈F ′′(u(k)+θ p(k))p(k), p(k)〉,

since the Jacobian system is solved approximately. From this perspective, eliminat-
ing the equations with large residual is a way to control the higher order terms of
F such that it can be linearly approximated much better during the global Newton
iteration. However, the nonlinear elimination just on the equations with indices in
Sb could lead to thrashing (i.e., the norm of the residual ‖F‖ could become larger
due to the boundary effect). To ease this phenomenon, we extend the index set Sb to
Sδ

b by adding the neighbor d.o.f, of which the distances to Sb are smaller than δ .
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4 Numerical Results

We implement the discretization for hyperelasticity and the nonlinear solvers de-
scribed in the previous sections by using FEniCS [13] and PETSc [1], respectively.
Based on the parameter sets of the model ψA in Table. 1, we propose three test exam-
ples to investigate the performance of nonlinear elimination for the materials with
large deformation, quasi-incompressibility and high anisotropy. In all of the tests,
the backtracking line search strategy is used to determine the maximum amount to
move along the search direction computed by a direct solver.

Set Layer c1 ε1 ε2(-) α1 α2 Purpose
L – 1.e3 1.e3 1.0 0.0 0.0 Deformations by different pulls

C1 – 1.e3 1.e3 1.0 0.0 0.0
Different penalties for compressiblityC2 – 1.e3 1.e4 1.0 0.0 0.0

C3 – 1.e3 1.e5 1.0 0.0 0.0

A1 Adv. 7.5 100.0 20.0 1.5e10 20.0

Anisotropic arterial walls

Med. 17.5 100.0 50.0 5.0e5 7.0

A2 Adv. 6.6 23.9 10 1503.0 6.3
Med. 17.5 499.8 2.4 30001.9 5.1

A3 Adv. 7.8 70.0 8.5 1503.0 6.3
Med. 9.2 360.0 9.0 30001.9 5.1

Table 1: Model parameter sets [5, 6] of ψA

Example 1. This example simulates the deformations of a cylindrical rod by differ-
ent pulls. We fix one end of the rod and then pull it down from the other end. The
material parameters are given in Set L of Table 1. It is an isotropic model since
α1 = 0.0. The deformations by three different pulls L1 = 1.e1 Pa,L2 = 1.e2 Pa and
L3 = 1.e3 Pa are plotted in Fig. 1b. The convergence history of the Newton iteration
with nonlinear elimination (IN-NE) is shown in Fig. 1a. We compare the results with
those obtained by using a standard inexact Newton (IN) method. The blue lines are
for the IN-NE algorithm while the red lines for the IN method. As indicated by Fig.
1a, the nonlinear elimination method accelerates the convergence of the Newton
iteration even for the case of large deformation.

Example 2. This example studies the performance of nonlinear elimination for the
cases of different compressibility. The parameters are given in the sets C1,C2 and
C3 of Table 1. For consistency with linear elasticity, C1 =

µ

2 ,ε1 =
κ

2 , where µ,κ are
the shear and bulk modulus. The Poisson ratio can be computed by ν = 3κ−2µ

2(3κ+µ) ;
see Table 2. We use the same setting of the geometry and the boundary conditions
with that of the previous example. Fig. 2 shows the superiority of the nonlinear
elimination in the quasi-incompressible case.

Example 3. We consider an artificial arterial segment with a plaque and fibre-
enforcing layers. The problem setting, including the geometry and boundary condi-
tions, originates from [5]. More precisely, a pressure of up to 24 kPa (< 180 mmHg)
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Fig. 1: Numerical results of Example 1.
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Fig. 2: Convergence histories for Example 2.

Set Poisson’s Ratio
C1 0.125
C2 0.452
C3 0.495

Table 2: Poisson’s ratio
of materials C1, C2 and
C3.

is applied to the interior of the arterial segment, of which the von Mises stress is
shown in Fig. 3b. The parameter sets A1 and A2 of Table 1 are adjusted in [5] to
fit the experiment data, and A3 in [6] with slight modification. The convergence
histories of IN and IN-NE are shown in Fig. 3b. Similar to the previous examples,
the nonlinear elimination increases the residual at the first few steps of Newton’s
iteration, but then the iteration converges faster.

5 Conclusions

The main contribution of this paper was to investigate the performance of a nonlin-
ear elimination preconditioner with applications in computational hyperelasticity.



8 Shihua Gong and Xiao-Chuan Cai

Newton Iterations
0 20 40 60 80 100

L
2
 N

o
rm

 o
f 
R

e
s
id

u
a
l

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Convergence History

A1 (IN)
A2 (IN)
A3 (IN)
A2 (IN-NE)
A3 (IN-NE)

(a) Convergence histories of IN and IN-NE (b) von Mises stress

Fig. 3: Numerical result of Example 3.

A robust strategy of nonlinearity checking was adapted to capture the subregions
with stronger nonlinearity, which coincide with the propagation of the elastic wave.
Moreover, we found that the extension for the eliminating index set by adding the
neighbor d.o.f. is an effective trick to ease the thrashing phenomenon of nonlinear
elimination. As future work, we will use more feasible linear solvers for the Jacobian
system and consider other arterial wall problems with patient-specific geometry.
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